| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 
 | #include <opencv2/dnn.hpp>#include <opencv2/imgproc.hpp>
 #include <opencv2/highgui.hpp>
 #include <opencv2/objdetect.hpp>
 #include <iostream>
 using namespace cv;
 using namespace std;
 static
 void visualize(Mat& input, int frame, Mat& faces, double fps, int thickness = 2)
 {
 std::string fpsString = cv::format("FPS : %.2f", (float)fps);
 if (frame >= 0)
 cout << "Frame " << frame << ", ";
 cout << "FPS: " << fpsString << endl;
 for (int i = 0; i < faces.rows; i++)
 {
 
 cout << "Face " << i
 << ", top-left coordinates: (" << faces.at<float>(i, 0) << ", " << faces.at<float>(i, 1) << "), "
 << "box width: " << faces.at<float>(i, 2)  << ", box height: " << faces.at<float>(i, 3) << ", "
 << "score: " << cv::format("%.2f", faces.at<float>(i, 14))
 << endl;
 
 rectangle(input, Rect2i(int(faces.at<float>(i, 0)), int(faces.at<float>(i, 1)), int(faces.at<float>(i, 2)), int(faces.at<float>(i, 3))), Scalar(0, 255, 0), thickness);
 
 circle(input, Point2i(int(faces.at<float>(i, 4)), int(faces.at<float>(i, 5))), 2, Scalar(255, 0, 0), thickness);
 circle(input, Point2i(int(faces.at<float>(i, 6)), int(faces.at<float>(i, 7))), 2, Scalar(0, 0, 255), thickness);
 circle(input, Point2i(int(faces.at<float>(i, 8)), int(faces.at<float>(i, 9))), 2, Scalar(0, 255, 0), thickness);
 circle(input, Point2i(int(faces.at<float>(i, 10)), int(faces.at<float>(i, 11))), 2, Scalar(255, 0, 255), thickness);
 circle(input, Point2i(int(faces.at<float>(i, 12)), int(faces.at<float>(i, 13))), 2, Scalar(0, 255, 255), thickness);
 }
 putText(input, fpsString, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 2);
 }
 int main(int argc, char** argv)
 {
 CommandLineParser parser(argc, argv,
 "{help  h           |            | Print this message}"
 "{image1 i1         |            | Path to the input image1. Omit for detecting through VideoCapture}"
 "{image2 i2         |            | Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm}"
 "{video v           | 0          | Path to the input video}"
 "{scale sc          | 1.0        | Scale factor used to resize input video frames}"
 "{fd_model fd       | face_detection_yunet_2021dec.onnx| Path to the model. Download yunet.onnx in https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet}"
 "{fr_model fr       | face_recognition_sface_2021dec.onnx | Path to the face recognition model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface}"
 "{score_threshold   | 0.9        | Filter out faces of score < score_threshold}"
 "{nms_threshold     | 0.3        | Suppress bounding boxes of iou >= nms_threshold}"
 "{top_k             | 5000       | Keep top_k bounding boxes before NMS}"
 "{save s            | false      | Set true to save results. This flag is invalid when using camera}"
 );
 if (parser.has("help"))
 {
 parser.printMessage();
 return 0;
 }
 String fd_modelPath = parser.get<String>("fd_model");
 String fr_modelPath = parser.get<String>("fr_model");
 float scoreThreshold = parser.get<float>("score_threshold");
 float nmsThreshold = parser.get<float>("nms_threshold");
 int topK = parser.get<int>("top_k");
 bool save = parser.get<bool>("save");
 float scale = parser.get<float>("scale");
 double cosine_similar_thresh = 0.363;
 double l2norm_similar_thresh = 1.128;
 
 Ptr<FaceDetectorYN> detector = FaceDetectorYN::create(fd_modelPath, "", Size(320, 320), scoreThreshold, nmsThreshold, topK);
 TickMeter tm;
 
 if (parser.has("image1"))
 {
 String input1 = parser.get<String>("image1");
 Mat image1 = imread(samples::findFile(input1));
 if (image1.empty())
 {
 std::cerr << "Cannot read image: " << input1 << std::endl;
 return 2;
 }
 int imageWidth = int(image1.cols * scale);
 int imageHeight = int(image1.rows * scale);
 resize(image1, image1, Size(imageWidth, imageHeight));
 tm.start();
 
 detector->setInputSize(image1.size());
 Mat faces1;
 detector->detect(image1, faces1);
 if (faces1.rows < 1)
 {
 std::cerr << "Cannot find a face in " << input1 << std::endl;
 return 1;
 }
 tm.stop();
 
 visualize(image1, -1, faces1, tm.getFPS());
 
 if (save)
 {
 cout << "Saving result.jpg...\n";
 imwrite("result.jpg", image1);
 }
 
 imshow("image1", image1);
 pollKey();
 if (parser.has("image2"))
 {
 String input2 = parser.get<String>("image2");
 Mat image2 = imread(samples::findFile(input2));
 if (image2.empty())
 {
 std::cerr << "Cannot read image2: " << input2 << std::endl;
 return 2;
 }
 tm.reset();
 tm.start();
 detector->setInputSize(image2.size());
 Mat faces2;
 detector->detect(image2, faces2);
 if (faces2.rows < 1)
 {
 std::cerr << "Cannot find a face in " << input2 << std::endl;
 return 1;
 }
 tm.stop();
 visualize(image2, -1, faces2, tm.getFPS());
 if (save)
 {
 cout << "Saving result2.jpg...\n";
 imwrite("result2.jpg", image2);
 }
 imshow("image2", image2);
 pollKey();
 
 Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(fr_modelPath, "");
 
 Mat aligned_face1, aligned_face2;
 faceRecognizer->alignCrop(image1, faces1.row(0), aligned_face1);
 faceRecognizer->alignCrop(image2, faces2.row(0), aligned_face2);
 
 Mat feature1, feature2;
 faceRecognizer->feature(aligned_face1, feature1);
 feature1 = feature1.clone();
 faceRecognizer->feature(aligned_face2, feature2);
 feature2 = feature2.clone();
 double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_COSINE);
 double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_NORM_L2);
 if (cos_score >= cosine_similar_thresh)
 {
 std::cout << "They have the same identity;";
 }
 else
 {
 std::cout << "They have different identities;";
 }
 std::cout << " Cosine Similarity: " << cos_score << ", threshold: " << cosine_similar_thresh << ". (higher value means higher similarity, max 1.0)\n";
 if (L2_score <= l2norm_similar_thresh)
 {
 std::cout << "They have the same identity;";
 }
 else
 {
 std::cout << "They have different identities.";
 }
 std::cout << " NormL2 Distance: " << L2_score << ", threshold: " << l2norm_similar_thresh << ". (lower value means higher similarity, min 0.0)\n";
 }
 cout << "Press any key to exit..." << endl;
 waitKey(0);
 }
 else
 {
 int frameWidth, frameHeight;
 VideoCapture capture;
 std::string video = parser.get<string>("video");
 if (video.size() == 1 && isdigit(video[0]))
 capture.open(parser.get<int>("video"));
 else
 capture.open(samples::findFileOrKeep(video));
 if (capture.isOpened())
 {
 frameWidth = int(capture.get(CAP_PROP_FRAME_WIDTH) * scale);
 frameHeight = int(capture.get(CAP_PROP_FRAME_HEIGHT) * scale);
 cout << "Video " << video
 << ": width=" << frameWidth
 << ", height=" << frameHeight
 << endl;
 }
 else
 {
 cout << "Could not initialize video capturing: " << video << "\n";
 return 1;
 }
 detector->setInputSize(Size(frameWidth, frameHeight));
 cout << "Press 'SPACE' to save frame, any other key to exit..." << endl;
 int nFrame = 0;
 for (;;)
 {
 
 Mat frame;
 if (!capture.read(frame))
 {
 cerr << "Can't grab frame! Stop\n";
 break;
 }
 resize(frame, frame, Size(frameWidth, frameHeight));
 
 Mat faces;
 tm.start();
 detector->detect(frame, faces);
 tm.stop();
 Mat result = frame.clone();
 
 visualize(result, nFrame, faces, tm.getFPS());
 
 imshow("Live", result);
 int key = waitKey(1);
 bool saveFrame = save;
 if (key == ' ')
 {
 saveFrame = true;
 key = 0;
 }
 if (saveFrame)
 {
 std::string frame_name = cv::format("frame_%05d.png", nFrame);
 std::string result_name = cv::format("result_%05d.jpg", nFrame);
 cout << "Saving '" << frame_name << "' and '" << result_name << "' ...\n";
 imwrite(frame_name, frame);
 imwrite(result_name, result);
 }
 ++nFrame;
 if (key > 0)
 break;
 }
 cout << "Processed " << nFrame << " frames" << endl;
 }
 cout << "Done." << endl;
 return 0;
 }
 
 |